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Interplay of instabilities in mounded surface growth
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We numerically study a one-dimensional conserved growth equation with competing (Bledich-
Schwoebeéland nonlinear instabilities. As a control parameter is varied, this model exhibits a nonequilibrium
phase transition between two mounded states, one of which exhibits slope selection and the other does not. The
coarsening behavior of the mounds in these two phases is studied in detail. In the absence of noise, the
steady-state configuration depends crucially on which of the two instabilities dominates the early time
behavior.
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The phenomenon of formation and coarsening of moundsonlinear instability mentioned above. The main results of
in epitaxially grown thin filmg1] is a subject of much recent this study are as follows. If the model parameters are such
experimental2,3] and theoretica]4—6] interest. Tradition- that the nonlinear instability is the dominant one, then the
ally, the formation of mounds has been attributed to the preshehavior of the system is similar to that found in our earlier
ence of an Ehrlich-Schwoeb¢ES) step-edge barrief7,8]  studies [10,11: it exhibits the formation of triangular
that hinders the downward motion of atoms across the edg@ounds and power-law coarsening with slope selection. If,
of a step. The ES mechanism is usually represented in coRy, the other hand, the linear instability is dominant, then the
tinuum growth equations as lmear instability [9] that is  gystem exhibits a different kind of mounded state in which
controlled by hig_her-order_nonlinear terms. In ES-type mod+he mounds have a cusplike shape and they steepen during
els, slope selection occufse., the slope of trle mounf?S '€ the coarsening process. We call these two mounded states
mains constant during coarseningnly if the “ES part” of  «t3ceted” and “cusped,” respectively. As the parameters are
the sIope—dependent surface current has one or more Statﬂﬁanged, the system undergoesyaamical phase transition
zeros as a function of the slope. _ _ from one of these mounded states to the other.

In our earlier work 10,11 on a class of spatially discrete,  \yg study a spatially discretized 1D version of the fourth-
conserved, one-dimensional1D) models of epitaxial rger conserved growth equation, proposed in the context of
growth, we reported on a mechanism of mound formationige growth[9,12], in which the nonlinear instabilitj14] is
and coarsening with slope selection that is different from thggntrolied using a control functiof.0,11 of the form pro-
conventional ES mechanism. We studied the spatially disposeqd by Politi and Villaif5] and a linear instability of the
cre_tlzed Lai-Das Sarma equatltﬁﬂJ_Z]_of molecular beam ¢4, proposed by Johnsoet al. [2] to represent the ES
epitaxy (MBE) growth and an atomistic mod13] that pro-  eftect is also included. Thus, the equation of motion of the

vides a discrete realization of the dynamics described by thigyerface height in appropriately nondimensionalized form is
equation, and found the occurrence afa@nlinearinstability |\ ritten as

[14] in which isolated pillars or grooves grow in time if their

height or depth exceeds a “critical” value. When this insta- ahilat=—V* +\VY|Vh|2(1 +c,|VhD)]
bility is controlled by the introduction of an infinite number -~ ~ ~
of higher-order gradient nonlinearities, these models show, = VIVh/(1 +c,[Vh|3)] + 7(t), (1)

fo.r a range C.)f parameter values, the formation of mound%herehi is the nondimensionalized height variable at lattice
with well-defined slopes that remain constant during the % and©? the [atti : f the derivati
an are the lattice versions of the derivative

coarsening process. sitei, andV' / :
In most experimentally studied systems, however, it isand Laplacian operators, respectively, calculated using the

believed that the ES step-edge barrier is present, although iearest neighbors as outlined in our earlier papEdsl 1. In

may possibly be very weak. It is, therefore, important toEd: (1) €1, C2, and are constantémodel parameteysand
understand how the behavior of our models would be modiZi(t) represents uncorrelated random noise with zero mean
fied when the ES mechanism is incorporated in their kineticsf?‘nd unit variance. Our r_esult_s are bas_ed on t_he numerical
To address this issue, we have studied, using numerical intdtégration of this equation in 1D, using a simple Euler
gration, a spatially discretized 1D growth equation in whichS¢heme[14] in which the time evolution of the height vari-

a linear ES-type instability is present in conjunction with the@bles is given by

hi(t + At) = hy(t) + A[V2(= V2hy(t) + \{|V h (1) |2/ 1

*Present address: Department of Physics, University of + ¢y Vhi(D]T]) = VIV (D/[1 + o[ Vhi(H)[*]}]
Massachusetts, Amherst, MA 01003. Electronic address: " V’Kt 7(® )
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FIG. 1. The interface profiles at three different timgs 100,
4000 and 256 000in a run with noise starting from a flat state for

an L=400 sample witln=4.0 andc;=0.05. A double logarithimic . . . L
lot of the interface widthW as a function of time. averaged over tion of timet, for faceted growth with slope selection in the absence
P ' 9 of noise. These data are far=4.0,c,=0.01, and_=800, averaged

15 runs forL=1OOQ samples in the presence of noise, and a POWEIG er 20 initial conditions. In this case the growth expongnt
law fit are shown in the inset.

=0.5+0.01(the dashed line is the best power-law éihd the steep-

fixed at unity, andc, and A were varied. Our results are ©ning exponent=0.
obtained for different system sizes, 4@ <1000, with pe-
riodic boundary conditions. We do not find any significant ~ This “bistable” behavior is found only if the control pa-
L-dependence. We have used a time si¢p0.01 for most rameter c¢; is sufficiently small. Otherwise, the system
of our studies and checked that very similar results are obevolves to the cusped morphology even if the initial configu-
tained with smaller values aft. ration has a high central pillar. Thus, the faceted morphology
We first describe the results obtained in the absence of thié found in the zero-noise simulations onlycif< c3*(\) [the
noise term. In this case, we find that if the parameteis  superscripspdenotes “spinodal,lsee below] and the initial
sufficiently small, then the long-time behavior of the inter- configuration is sufficiently rough to seed the nonlinear in-
face depends on which of the instabilities dominates at earlgtability. This behavior may be understood from a linear sta-
times. In order to characterize this, we considered initial conbility analysis. In both the faceted and cusped growths, the
figurations with a single pillar of height, on an otherwise finite-sized system evolves, at long times, to a profile with a
flat interface, and studied the long-time behavior as a funcsingle mound that is a fixed point of the noiseless dynamics.
tion of hy. We find that wherh, is sufficiently small, so that Examples of such profilegbtained from simulations with
the nonlinear instability is not initiated, the linear instability noise that slightly roughens the profilese shown in Figs. 1
dominates the time evolution and the resulting morphologyand 2. These fixed points can also be obtained by calculating
is mounded without slope selectigfcusp” like), similar to  the h; for which g;=0 for all i, whereg; is the term multi-
the profiles shown in Fig. 1. If on the other hanglis large  plying At on the right-hand side of EqR). The local stability
enough to seed the nonlinear instability, then mounds with af the faceted fixed point may be determined from a calcu-
“magic” slope (“faceted” morphology, similar to those lation of the eigenvalues of the matii; = dg;/ oh; evaluated
shown in Fig. 2 result. The critical value ok that separates at the fixed point. We find that the largest eigenvalue of this
these two kinds of behavior is approximately givenAf\,  matrix crosses zero at a spinodal valogsci(\) (see inset
A=21, with a weak dependence on the parameter of Fig. 3), signaling an instability of the faceted profile.
Thus, for 0<c,<c{A(\), the dynamics of Eq(2), without
noise, admits two locally stable invariant profiles: a cusped
profile without slope selection, and a faceted one with slope
selection. Depending on the initial state, the no-noise dynam-
ics takes the system to one of these two fixed points. For
example, an initial state with one pillar on a flat background
is driven by the no-noise dynamics to the cusped fixed point

FIG. 3. Double logarithimic plots of the widtt/ (full line) and
the average of the maximum slopg (dash-dotted lineas a func-

3000

8

0 \7 ‘|‘/ NV if the height of the pillar is smaller than a critical value
t = 4000 (mentioned earligr and to the faceted one otherwise. The
t=200 ¥ 2560000 dependence of;” on the nonlinearity parametaris shown
0 100 200 300 400 in Fig. 3. Such a spinodal line does not exist for the cusped
! fixed point.
FIG. 2. Interface profiles at three different timgs-200, 4000 We have studied in detail the process of coarsening of the

and 2560 00Din a run starting from a flat state for an=400 ~Mounds in the two differentfaceted and cuspgdgrowth
sample with\ =4.0 andc;=0.01. A double logarithimic plot of the modes. In these simulations, the initial configuration is ob-

interface widthW as a function of time, averaged over 15 runs for tained by settindy=hor; wherer; is a random number uni-
L=1000 samples in the presence of noise, and power-law fits to theormly distributed between-1 and 1. Ifc,<cj” and hy is
early- and late-time data are shown in the inset. sufficiently large to initiate the nonlinear instability, the sys-
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FIG. 4. Variation of widthW (full line) and the average of the FIG. 5. Phase diagram for la=200 system, where the critical
maximum slopes, (dash-dotted lingas a function of timé on a  values of the control parametey are shown as functions af The
log-log scale for cusped growth in the absence of n¢lse4.0,  critical value c{A(cS") above which the faceted phase is unstable
¢;=0.05, andL=800, averaged over 20 initial conditionsThe  (metastableis shown by squarefriangles. The dashed lines are
growth exponent ig3=0.54+0.02, and the steepening exponént guides to the eye. Left inset: The zero crossing of the largest eigen-
=0.2+0.02. The best power-law fits are shown by the dashed linessalue « of the stability matrix of the faceted fixed point as a func-

. ti fci(\=4.0,L=200. Right inset: Th babilitieB; (circl
tem evolves to a faceted structure; a cusped structure is o jon of ¢ ( ' 0. Right inset: The probabilitieB; (circles

tained otherwise. The results reported here were obtainegp d Py ('mierted trianglek (see text as functions ofc, with A
. . . =5.0 andL=200.

from averages over 20 such runs with different initial con-

figurations. In the region of parameter space; @< c;A(\),

where the faceted phase is locally stable, the mounds coarse

in time with the slope of the mounds remaining constant. |

this case, the average mound sR) is obviously propor-

tional to the interface widttW(t). As shown in Fig. 4, the

interface width in this growth mode increases as a power la : . . . .
with time in the long-time coarsening regime, while the progresses isolated pillars with heigigt> hrin, Wherehy, is

slope of the mounds remains constant in time. The expone/f® Minimum height of such a pillar above which the nonlin-
 that described this power-law coarsening behawt) €& instability is operative, make their appearance through
«R(t) =4, is found to be close to 0.5. The coarsening of thefandom quct_uatlons. The time evolut|_on of _the mte_rfape be-
mounds in the cusped reginfee., for c,>c(\) and any yonq the pomt of occurrence of the instability is similar to
initial configuration, anct; <cSP(\) and sufficiently smooth that in the noiseless situation. In Fig. 2 we present snapshots
initial configurationg is qualitatively different. In this growth ©f @n L=400 sample forx=4.0 andc,=0.01 at different
mode, both the interface width and the average skipeof stages of growth_t=200 (before the onset of the instabiljty

the cusplike moundgas well as the maximum slopg(t)] o~ t=4000(coarsening regimeandt=2 560 000(steady state
increase with time as power laws in the coarsening regimeThe inset shows a plot of th.e interface width as a function of
W(t)octA, ands(t) «t’. This implies that the average mound tme, obtained by averaging over 15 runs for1000
size also increases with time as a power I&(t) «t" with samples. The averaged data show a power-law growth re-
n=B- 6. This behavior is illustrated in Fig. 5. The values of 9iMe with an exponent of 0.37+0.01 before the onset of the
the exponents are found to b@=0.54+0.02 and 6 instability and a second power-law coarsening regime with
=0.2+0.02, implying that the coarsening exponentnis Wt’, 8=0.49+0.02.

=0.34+0.04. A dynamical phase transition &§=c{'(\) <ciA(\) sepa-

In the presence of noise, the steady state behavior is ifates these two kinds of growth modes. To calcut#ter),
dependent of the initial condition. When the control param-we start a system at the faceted fixed point and follow its
eterc, is sufficiently large, the nonlinear instability is com- evolution according to Eq(2) for a long time (typically t
pletely suppressed and the route to mounding is similar te=10%) to check whether it reaches a cusped steady state. By
the linear instability-dominated behavior mentioned aboverepeating this procedure many timggpically 100 rung, the
the configurations being slightly roughened versions of theiprobability, P;(\,c;), of a transition to a cusped state is ob-
noiseless counterpart. This is illustrated in Fig. 1, where théained. For fixed\, P, increases rapidly from 0 to 1 as is
interface profiles in a typical run starting from a flat state forincreased above a critical value. Typical results Rgras a
L=400, A\=4.0, andc;=0.05 are shown at times=100 function ofc, for A=5.0 are shown in the right inset of Fig.
(early-time regimg t=4000 (coarsening regimeand t 3. The value ofc, at whichP,=0.5 provides an estimate of
=256 000(steady state The inset shows the interface width c{'. Another estimate is obtained from a similar calculation of
W as a function oft, averaged over 15 runs fdr=1000 Ps(\,c,), the probability that a flat initial state evolves to a
samples. The averaged data shéat?, 5=0.5+0.01 in the faceted steady state. As expect®d,increases sharply from
coarsening regime. The average slope of the mounded inte@-to 1 asc, is decrease(see the right inset of Fig.)3and the
face grows ass(t)«t?, with §=0.18+0.02 and hence the value ofc, at which this probability is 0.5 is slightly lower
coarsening exponent i$=0.32+0.03. than the value at whiclP;=0.5. This difference reflects

nAs the value ofc; is decreased below a critical value

olding \ fixed, the nonlinear instability dominates over the
nIinear one. At early times in runs starting from a flat state, the
interface is self-affine and the interface width shows power-
v!}e\w scaling with an exponent close to 0.37. As time
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finite-time hysteresis effects. The valuedjf is taken to be  our spatially discrete growth model in which the linear ES
the average of these two estimates, and the difference b@stability is also present may, for appropriate parameter val-
tween the two estimates provides a measure of the unceues, lead to mound formation with slope selection and
tainty in the determination of{’. The phase boundary ob- power-law coarsening. This is qualitatively different from
tained this way is shown in Fig. 3, along with the results forthe behavior in the parameter regime where the ES instability
csP. dominates: the system exhibits mound formation in this re-
The scaling behavior in the coarsening regime in the presgime also, but there is no slope selection. The coarsening
ence of noise is the same as that found in the noiseless casxponent has different values in these two regimes which are
The qualitative behavior in the faceted phase is similar teseparated by a line of first-order dynamical phase transitions.
that found in our earlier work10,11] on this model without The ES part of the surface current in our model does not
the ES term. The ES term, however, has an important effecizanish for any nonzero value of the slope. Therefore, the
it changes the coarsening exponent from 0.33 to 0.5. A modedlope selection we find in the regime where the nonlinear
very similar to the one considered here was studied by Torinstability is dominant is qualitatively different from that in
cini and Politi[15] for parameter values deep in the cuspedES-type models and is a true example of nonlinear pattern
regime (small \, large c¢;). The mounded morphology we formation. The noiseless version of our model exhibits an
find in this regime is similar to that found in their study. Our interesting dependence on initial conditions: the long-time
results for the exponent$ andn are slightly different from  behavior depends on whether the inhomogeneities in the ini-
the values(#=n=1/4) reported by them. This is probably tial configuration are sufficient to seed the nonlinear instabil-
due to crossover effects—we have found values afoser ity. Both kinds of mounding behavior found in this study
to 1/4 if smaller values ok and/or larger values of; are  have been observed in experiments, and our model may be
used. relevant in the development of an understanding of these
In summary, we have shown that a nonlinear instability inexperimental observations.
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