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We numerically study a one-dimensional conserved growth equation with competing linearsEhrlich-
Schwoebeld and nonlinear instabilities. As a control parameter is varied, this model exhibits a nonequilibrium
phase transition between two mounded states, one of which exhibits slope selection and the other does not. The
coarsening behavior of the mounds in these two phases is studied in detail. In the absence of noise, the
steady-state configuration depends crucially on which of the two instabilities dominates the early time
behavior.
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The phenomenon of formation and coarsening of mounds
in epitaxially grown thin filmsf1g is a subject of much recent
experimentalf2,3g and theoreticalf4–6g interest. Tradition-
ally, the formation of mounds has been attributed to the pres-
ence of an Ehrlich-SchwoebelsESd step-edge barrierf7,8g
that hinders the downward motion of atoms across the edge
of a step. The ES mechanism is usually represented in con-
tinuum growth equations as alinear instability f9g that is
controlled by higher-order nonlinear terms. In ES-type mod-
els, slope selection occurssi.e., the slope of the mounds re-
mains constant during coarseningd only if the “ES part” of
the slope-dependent surface current has one or more stable
zeros as a function of the slope.

In our earlier workf10,11g on a class of spatially discrete,
conserved, one-dimensionals1Dd models of epitaxial
growth, we reported on a mechanism of mound formation
and coarsening with slope selection that is different from the
conventional ES mechanism. We studied the spatially dis-
cretized Lai–Das Sarma equationf12g of molecular beam
epitaxysMBEd growth and an atomistic modelf13g that pro-
vides a discrete realization of the dynamics described by this
equation, and found the occurrence of anonlinear instability
f14g in which isolated pillars or grooves grow in time if their
height or depth exceeds a “critical” value. When this insta-
bility is controlled by the introduction of an infinite number
of higher-order gradient nonlinearities, these models show,
for a range of parameter values, the formation of mounds
with well-defined slopes that remain constant during the
coarsening process.

In most experimentally studied systems, however, it is
believed that the ES step-edge barrier is present, although it
may possibly be very weak. It is, therefore, important to
understand how the behavior of our models would be modi-
fied when the ES mechanism is incorporated in their kinetics.
To address this issue, we have studied, using numerical inte-
gration, a spatially discretized 1D growth equation in which
a linear ES-type instability is present in conjunction with the

nonlinear instability mentioned above. The main results of
this study are as follows. If the model parameters are such
that the nonlinear instability is the dominant one, then the
behavior of the system is similar to that found in our earlier
studies f10,11g: it exhibits the formation of triangular
mounds and power-law coarsening with slope selection. If,
on the other hand, the linear instability is dominant, then the
system exhibits a different kind of mounded state in which
the mounds have a cusplike shape and they steepen during
the coarsening process. We call these two mounded states
“faceted” and “cusped,” respectively. As the parameters are
changed, the system undergoes adynamical phase transition
from one of these mounded states to the other.

We study a spatially discretized 1D version of the fourth-
order conserved growth equation, proposed in the context of
MBE growthf9,12g, in which the nonlinear instabilityf14g is
controlled using a control functionf10,11g of the form pro-
posed by Politi and Villainf5g and a linear instability of the
form proposed by Johnsonet al. f2g to represent the ES
effect is also included. Thus, the equation of motion of the
interface height in appropriately nondimensionalized form is
written as

] hi/] t = − ¹̃4hi + l¹̃2fu¹̃hiu2/s1 + c1u¹̃hiu2dg

− ¹̃f¹̃hi/s1 + c2u¹̃hiu2dg + histd, s1d

wherehi is the nondimensionalized height variable at lattice

site i, and¹̃ and¹2˜ are the lattice versions of the derivative
and Laplacian operators, respectively, calculated using the
nearest neighbors as outlined in our earlier papersf10,11g. In
Eq. s1d, c1, c2, andl are constantssmodel parametersd, and
histd represents uncorrelated random noise with zero mean
and unit variance. Our results are based on the numerical
integration of this equation in 1D, using a simple Euler
schemef14g in which the time evolution of the height vari-
ables is given by

hist + Dtd = histd + Dt†¹̃2
„− ¹̃2histd + lhu¹̃histdu2/f1

+ c1u¹̃histdu2gj… − ¹̃h¹̃histd/f1 + c2u¹̃histdu2gj‡

+ ÎDt histd. s2d

In all our calculations, the value of the parameterc2 was held

*Present address: Department of Physics, University of
Massachusetts, Amherst, MA 01003. Electronic address:
buddho@physics.umass.edu

†Electronic address: cdgupta@physics.iisc.ernet.in

PHYSICAL REVIEW E 71, 020601sRd s2005d

RAPID COMMUNICATIONS

1539-3755/2005/71s2d/020601s4d/$23.00 ©2005 The American Physical Society020601-1



fixed at unity, andc1 and l were varied. Our results are
obtained for different system sizes, 40øLø1000, with pe-
riodic boundary conditions. We do not find any significant
L-dependence. We have used a time stepDt=0.01 for most
of our studies and checked that very similar results are ob-
tained with smaller values ofDt.

We first describe the results obtained in the absence of the
noise term. In this case, we find that if the parameterc1 is
sufficiently small, then the long-time behavior of the inter-
face depends on which of the instabilities dominates at early
times. In order to characterize this, we considered initial con-
figurations with a single pillar of heighth0 on an otherwise
flat interface, and studied the long-time behavior as a func-
tion of h0. We find that whenh0 is sufficiently small, so that
the nonlinear instability is not initiated, the linear instability
dominates the time evolution and the resulting morphology
is mounded without slope selections“cusp” liked, similar to
the profiles shown in Fig. 1. If on the other handh0 is large
enough to seed the nonlinear instability, then mounds with a
“magic” slope s“faceted” morphology, similar to those
shown in Fig. 2d result. The critical value ofl that separates
these two kinds of behavior is approximately given byA/l,
A.21, with a weak dependence on the parameterc1.

This “bistable” behavior is found only if the control pa-
rameter c1 is sufficiently small. Otherwise, the system
evolves to the cusped morphology even if the initial configu-
ration has a high central pillar. Thus, the faceted morphology
is found in the zero-noise simulations only ifc1,c1

spsld fthe
superscriptspdenotes “spinodal,”ssee belowdg and the initial
configuration is sufficiently rough to seed the nonlinear in-
stability. This behavior may be understood from a linear sta-
bility analysis. In both the faceted and cusped growths, the
finite-sized system evolves, at long times, to a profile with a
single mound that is a fixed point of the noiseless dynamics.
Examples of such profilessobtained from simulations with
noise that slightly roughens the profilesd are shown in Figs. 1
and 2. These fixed points can also be obtained by calculating
the hi for which gi =0 for all i, wheregi is the term multi-
plying Dt on the right-hand side of Eq.s2d. The local stability
of the faceted fixed point may be determined from a calcu-
lation of the eigenvalues of the matrixMij =]gi /]hj evaluated
at the fixed point. We find that the largest eigenvalue of this
matrix crosses zero at a spinodal value,c1=c1

spsld ssee inset
of Fig. 3d, signaling an instability of the faceted profile.
Thus, for 0,c1,c1

spsld, the dynamics of Eq.s2d, without
noise, admits two locally stable invariant profiles: a cusped
profile without slope selection, and a faceted one with slope
selection. Depending on the initial state, the no-noise dynam-
ics takes the system to one of these two fixed points. For
example, an initial state with one pillar on a flat background
is driven by the no-noise dynamics to the cusped fixed point
if the height of the pillar is smaller than a critical value
smentioned earlierd, and to the faceted one otherwise. The
dependence ofc1

sp on the nonlinearity parameterl is shown
in Fig. 3. Such a spinodal line does not exist for the cusped
fixed point.

We have studied in detail the process of coarsening of the
mounds in the two differentsfaceted and cuspedd growth
modes. In these simulations, the initial configuration is ob-
tained by settinghi =h0r i wherer i is a random number uni-
formly distributed between21 and 1. If c1,c1

sp and h0 is
sufficiently large to initiate the nonlinear instability, the sys-

FIG. 1. The interface profiles at three different timesst=100,
4000 and 256 000d in a run with noise starting from a flat state for
an L=400 sample withl=4.0 andc1=0.05. A double logarithimic
plot of the interface widthW as a function of timet, averaged over
15 runs forL=1000 samples in the presence of noise, and a power-
law fit are shown in the inset.

FIG. 2. Interface profiles at three different timesst=200, 4000
and 2 560 000d in a run starting from a flat state for anL=400
sample withl=4.0 andc1=0.01. A double logarithimic plot of the
interface widthW as a function of timet, averaged over 15 runs for
L=1000 samples in the presence of noise, and power-law fits to the
early- and late-time data are shown in the inset.

FIG. 3. Double logarithimic plots of the widthW sfull lined and
the average of the maximum slopesm sdash-dotted lined as a func-
tion of time t, for faceted growth with slope selection in the absence
of noise. These data are forl=4.0,c1=0.01, andL=800, averaged
over 20 initial conditions. In this case the growth exponentb
=0.5±0.01sthe dashed line is the best power-law fitd and the steep-
ening exponentu=0.
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tem evolves to a faceted structure; a cusped structure is ob-
tained otherwise. The results reported here were obtained
from averages over 20 such runs with different initial con-
figurations. In the region of parameter space, 0,c,c1

spsld,
where the faceted phase is locally stable, the mounds coarsen
in time with the slope of the mounds remaining constant. In
this case, the average mound sizeRstd is obviously propor-
tional to the interface widthWstd. As shown in Fig. 4, the
interface width in this growth mode increases as a power law
with time in the long-time coarsening regime, while the
slope of the mounds remains constant in time. The exponent
b that described this power-law coarsening behavior,Wstd
~Rstd~ tb, is found to be close to 0.5. The coarsening of the
mounds in the cusped regimefi.e., for c1.c1

spsld and any
initial configuration, andc1,c1

spsld and sufficiently smooth
initial configurationsg is qualitatively different. In this growth
mode, both the interface width and the average slopesstd of
the cusplike moundsfas well as the maximum slopesmstdg to
increase with time as power laws in the coarsening regime:
Wstd~ tb, andsstd~ tu. This implies that the average mound
size also increases with time as a power law:Rstd~ tn with
n=b−u. This behavior is illustrated in Fig. 5. The values of
the exponents are found to beb=0.54±0.02 and u
=0.2±0.02, implying that the coarsening exponent isn
=0.34±0.04.

In the presence of noise, the steady state behavior is in-
dependent of the initial condition. When the control param-
eterc1 is sufficiently large, the nonlinear instability is com-
pletely suppressed and the route to mounding is similar to
the linear instability-dominated behavior mentioned above,
the configurations being slightly roughened versions of their
noiseless counterpart. This is illustrated in Fig. 1, where the
interface profiles in a typical run starting from a flat state for
L=400, l=4.0, and c1=0.05 are shown at timest=100
searly-time regimed, t=4000 scoarsening regimed and t
=256 000ssteady stated. The inset shows the interface width
W as a function oft, averaged over 15 runs forL=1000
samples. The averaged data showW~ tb, b=0.5±0.01 in the
coarsening regime. The average slope of the mounded inter-
face grows assstd~ tu, with u=0.18±0.02 and hence the
coarsening exponent isn=0.32±0.03.

As the value ofc1 is decreased below a critical value
holding l fixed, the nonlinear instability dominates over the
linear one. At early times in runs starting from a flat state, the
interface is self-affine and the interface width shows power-
law scaling with an exponent close to 0.37. As time
progresses isolated pillars with heighth0.hmin, wherehmin is
the minimum height of such a pillar above which the nonlin-
ear instability is operative, make their appearance through
random fluctuations. The time evolution of the interface be-
yond the point of occurrence of the instability is similar to
that in the noiseless situation. In Fig. 2 we present snapshots
of an L=400 sample forl=4.0 andc1=0.01 at different
stages of growth:t=200 sbefore the onset of the instabilityd,
t=4000scoarsening regimed, andt=2 560 000ssteady stated.
The inset shows a plot of the interface width as a function of
time, obtained by averaging over 15 runs forL=1000
samples. The averaged data show a power-law growth re-
gime with an exponent of 0.37±0.01 before the onset of the
instability and a second power-law coarsening regime with
W~ tb, b=0.49±0.02.

A dynamical phase transition atc1=c1
crsld,c1

spsld sepa-
rates these two kinds of growth modes. To calculatec1

crsld,
we start a system at the faceted fixed point and follow its
evolution according to Eq.s2d for a long timestypically t
=104d to check whether it reaches a cusped steady state. By
repeating this procedure many timesstypically 100 runsd, the
probability, P1sl ,c1d, of a transition to a cusped state is ob-
tained. For fixedl, P1 increases rapidly from 0 to 1 asc1 is
increased above a critical value. Typical results forP1 as a
function of c1 for l=5.0 are shown in the right inset of Fig.
3. The value ofc1 at which P1=0.5 provides an estimate of
c1

cr. Another estimate is obtained from a similar calculation of
P2sl ,c1d, the probability that a flat initial state evolves to a
faceted steady state. As expected,P2 increases sharply from
0 to 1 asc1 is decreasedssee the right inset of Fig. 3d, and the
value ofc1 at which this probability is 0.5 is slightly lower
than the value at whichP1=0.5. This difference reflects

FIG. 4. Variation of widthW sfull lined and the average of the
maximum slope,sm sdash-dotted lined as a function of timet on a
log-log scale for cusped growth in the absence of noisesl=4.0,
c1=0.05, andL=800, averaged over 20 initial conditionsd. The
growth exponent isb=0.54±0.02, and the steepening exponentu
=0.2±0.02. The best power-law fits are shown by the dashed lines.

FIG. 5. Phase diagram for aL=200 system, where the critical
values of the control parameterc1 are shown as functions ofl. The
critical value c1

spsc1
crd above which the faceted phase is unstable

smetastabled is shown by squaresstrianglesd. The dashed lines are
guides to the eye. Left inset: The zero crossing of the largest eigen-
valuek of the stability matrix of the faceted fixed point as a func-
tion of c1sl=4.0,L=200d. Right inset: The probabilitiesP1 scirclesd
and P2 sinverted trianglesd ssee textd as functions ofc1 with l
=5.0 andL=200.
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finite-time hysteresis effects. The value ofc1
cr is taken to be

the average of these two estimates, and the difference be-
tween the two estimates provides a measure of the uncer-
tainty in the determination ofc1

cr. The phase boundary ob-
tained this way is shown in Fig. 3, along with the results for
c1

sp.
The scaling behavior in the coarsening regime in the pres-

ence of noise is the same as that found in the noiseless case.
The qualitative behavior in the faceted phase is similar to
that found in our earlier workf10,11g on this model without
the ES term. The ES term, however, has an important effect:
it changes the coarsening exponent from 0.33 to 0.5. A model
very similar to the one considered here was studied by Tor-
cini and Politi f15g for parameter values deep in the cusped
regime ssmall l, large c1d. The mounded morphology we
find in this regime is similar to that found in their study. Our
results for the exponentsu andn are slightly different from
the valuessu=n=1/4d reported by them. This is probably
due to crossover effects—we have found values ofn closer
to 1/4 if smaller values ofl and/or larger values ofc1 are
used.

In summary, we have shown that a nonlinear instability in

our spatially discrete growth model in which the linear ES
instability is also present may, for appropriate parameter val-
ues, lead to mound formation with slope selection and
power-law coarsening. This is qualitatively different from
the behavior in the parameter regime where the ES instability
dominates: the system exhibits mound formation in this re-
gime also, but there is no slope selection. The coarsening
exponent has different values in these two regimes which are
separated by a line of first-order dynamical phase transitions.
The ES part of the surface current in our model does not
vanish for any nonzero value of the slope. Therefore, the
slope selection we find in the regime where the nonlinear
instability is dominant is qualitatively different from that in
ES-type models and is a true example of nonlinear pattern
formation. The noiseless version of our model exhibits an
interesting dependence on initial conditions: the long-time
behavior depends on whether the inhomogeneities in the ini-
tial configuration are sufficient to seed the nonlinear instabil-
ity. Both kinds of mounding behavior found in this study
have been observed in experiments, and our model may be
relevant in the development of an understanding of these
experimental observations.
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